We know that
The fine structure constant squared is the ratio of the potential energy of an electron in the first
circular orbit to the energy given by the mass of an electron in the Bohr model times the speed of
light squared. To begin our search for the meaning of equation 1.4 we convert x, the factor of
1.00 to astronomical units, years, and solar masses, as these are connected to the orbit
of earth as it relates to the sun. We have:
=
We can now write
Eq 1.6.
This unit of AU/year is very interesting. It is not , which would be the Earth’s orbital
velocity, but is a velocity given by the earth orbital radius to its orbital period, which is quantum
mechanical in nature. It relates to earth as as a state, as we have with atoms, a number. We
multiply both sides by and we have earth velocity on the left and the units stay the same on
the right. But what we will do is return to the form in kg-m-s and leave it as an equation but put
in the Earth mean orbital velocity which is 29.79km/s (Zombeck, Martin V. 1982). We get:
Eq. 1.7
This brings up an interesting question: while we have masses characteristic of the microcosmos
like protons, and masses characteristic of the macrocosmos, like the minimum mass for a star to
become a neutron star as opposed to a white dwarf after she novas (The Chandrasekhar limit)
which is 1.44 solar masses, we do not have a characteristic mass of the intermediary world where
we exist, a truck weighs several tons and tennis ball maybe around a hundred grams. To find
that mass let us take the geometric mean between the mass of a proton and the mass of 1.44
solar masses. We could take the average, or the harmonic mean, but the geometric mean is the
squaring of the proportions, it is the side of a square with the area equal to the area of the
rectangle with these proportions as its sides. We have: